首页> 外文OA文献 >Joint Offloading and Computing Optimization in Wireless Powered Mobile-Edge Computing Systems
【2h】

Joint Offloading and Computing Optimization in Wireless Powered Mobile-Edge Computing Systems

机译:无线供电系统的联合卸载与计算优化   移动边缘计算系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mobile-edge computing (MEC) and wireless power transfer (WPT) have beenrecognized as promising techniques in the Internet of Things (IoT) era toprovide massive low-power wireless devices with enhanced computation capabilityand sustainable energy supply. In this paper, we propose a unified MEC-WPTdesign by considering a wireless powered multiuser MEC system, where amulti-antenna access point (AP) (integrated with an MEC server) broadcastswireless power to charge multiple users and each user node relies on theharvested energy to execute computation tasks. With MEC, these users canexecute their respective tasks locally by themselves or offload all or part ofthem to the AP based on a time division multiple access (TDMA) protocol.Building on the proposed model, we develop an innovative framework to improvethe MEC performance, by jointly optimizing the energy transmit beamformer atthe AP, the central processing unit (CPU) frequencies and the numbers ofoffloaded bits at the users, as well as the time allocation among users. Underthis framework, we address a practical scenario where latency-limitedcomputation is required. In this case, we develop an optimal resourceallocation scheme that minimizes the AP's total energy consumption subject tothe users' individual computation latency constraints. Leveraging thestate-of-the-art optimization techniques, we derive the optimal solution in asemi-closed form. Numerical results demonstrate the merits of the proposeddesign over alternative benchmark schemes.
机译:移动边缘计算(MEC)和无线功率传输(WPT)已被公认为是物联网(IoT)时代的有前途的技术,以提供具有增强的计算能力和可持续能源供应的大规模低功耗无线设备。在本文中,我们考虑无线供电的多用户MEC系统,提出了一个统一的MEC-WPT设计,其中多天线接入点(AP)(与MEC服务器集成)广播无线功率来为多个用户充电,并且每个用户节点都依赖于所收集的能量执行计算任务。借助MEC,这些用户可以根据时分多址(TDMA)协议自行在本地执行各自的任务或将全部或部分任务卸载到AP。共同优化AP处的能量传输波束成形器,中央处理器(CPU)的频率和用户的卸载位数量,以及用户之间的时间分配。在此框架下,我们解决了需要延迟限制计算的实际情况。在这种情况下,我们开发了一种最佳的资源分配方案,该方案可根据用户的单独计算延迟约束将AP的总能耗降至最低。利用最先进的优化技术,我们以半封闭形式得出最优解。数值结果证明了该设计方案优于其他基准方案的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号